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Spatial anisotropy and rotational invariance of critical hard 
squares 
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The Institute of Physical and Chemical Research (RIKEN), W&o, Saitatna, 351-01, Japan 

Received 22 March 1994, in final form 20 lune 1994 

Abstract. We develop a new method to analyse solvable models defined on a square lattice 
rotated through an arbitrary mgle with respect to the coordinate axes. In the method we 
introduce auxiliary faces into a rolated system to relate it with an inhomogeneous one in the 
natural orientation lp = 0. The inhomogeneous system is investigated by " m u t i n g  a "fer 
matrix argument As an application of the method, we consider interacting hard squares at the 
critical point. We discuss relations between spatial anisotropy and mtational (or c o n f a d )  
invariance of the model in calculations of finite-size properties. 

1. Introduction 

In principle, averaged properties (such as magnetization, pressure, etc) of a system can 
be calculated from its microscopic Hamiltonian within the framework of the statistical 
mechanics. Practically, however, these kinds of calculations are very complicated. We call 
a model solvable if a compact expression of its @er-site zero-field) free energy is obtainable 
without any approximations. 

We have many two-dimensional solvable models [l-31. It is known that there. exists a 
hidden symmetry called the Yang-Baxter relation (or equation) in their solvability [l, 3,4J. 
Draw a square lattice so that its rows and columns are parallel to the horizontal and 
vertical axes, respectively (figure I(a)); we will use the term 'natural' to refer to this lattice 
orientation. Impose on it periodic boundary conditions in both directions (toroidal boundary 
conditions). Then, a parametrized solution to the Yang-Baxter equation yields a family of 
commuting row-to-row transfer mahices (RRTMS). Using an equation for commuting RRTMS, 
we can determine the explicit forms of their eigenvalues and hence the free energy. 

If a square lattice is drawn diagonally (figure I@)), the geometry is convenient to 
consider relations between two-dimensional solvable models and solvable quantum spin 
chains [1,4-7]. For example, when interactions of the 6-vertex model become exmemely 
anisotropic, its diagonal-to-diagonal transfer matrix (DDTM) is related to the Hamiltonian 
of the XXZ-Heisenberg chain [6,7]. Some authors [SI showed how to solve the 6-vertex 
model with the DDTM by the Bethe ansatz method. Recently, Litvin and Priezzhev (LP) [9] 
analysed the 6-vertex model on a square lattice rotated through an arbitrary angle p with 
respect to the natural lattice orientation (figure l(c)). LP derived the Bethe ansatz equation 
for general 60 by the use of a random walk representation for configurations of the model. 
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(a) (b) (C) 

Figure 1. A square Ialtitice (a) in the nntural orientation. (b) drawn diagonally. and (c) rotated 
through p wilh respect to the coordinate axes. 

In the case of the ice model [lo] the Bethe ansatz equation was solved numerically to find 
that several cases of 'p give the same value of the per-site entropy S = (i) In (j). 

For conformally invariant models, LP indicated that the lattice rotation offers more 
interesting problems: The principle of scale invariance at the critical point is widely 
appreciated [ll].  A critical model whose interactions are isotropic is expected to be invariant 
under a larger group, that of conformal transformations 112-141. A conformal transformation 
is a point-to-point transformation which preserves angles but not necessarily distances. 
Locally, we can regard a conformal transformation as a combination of a dilatation (scale 
transformation), translation and rotation; and then, the length-rescaling factor, translation 
vector and rotation angles vary with position continuously. For lattice models it is difficult to 
carry out conformal transformations directly. Investigating their invariance under dilations, 
translations and rotations is helpful though the global transformations cannot be generalized 
to local ones automatically. 

In two dimensions, it is convenient to introduce the complex coordinate: z = x + iy. 
The conformal group is isomorphic to that of analytic functions. If we assume a conformally 
invariant model wrapped on a torus of size 1 x 1' (I' >> 1 >> 1) [14, IS], it is shown that the 
free energy F must be of the form 119 

F = l l ' f  - (I'/l)(nc/6) + . . . (1.1) 
where f is the pet-site free energy. A universal number c called the conformal anomaly 
(or central charge) appears in the 1'11 correction term; note that the l'll correction term 
is invariant under scale transformations 1 -+ al, 1' -+ 011'. For various solvable models 
the value of the central charge has been determined in analyses for p = 0 [ 17-22]. It is 
desirable to show invariance of the 1'11 correction term under lattice rotations. Applying the 
argument of LP (or the Bethe ansatz methods in [17, IS]) to these problems is very involved, 
however. Alternative methods are required. 

In this paper we propose a method to analyse solvable models on a square lattice rotated 
through an arbitrary angle p with respect to the coordinate axes. Introducing auxiliary 
faces, we relate a rotated system to an inhomogeneous one in the natural orientation. Then, 
the inhomogeneous system is investigated by commuting transfer matrices argument. The 
method is quite general in order to be applicable to a wide class of solvable models. Here we 
consider interacting hard squares [23-2S]. Finite-size properties of the model are calculated 
at the critical point. In the case of isotropic interactions we prove rotational invariance of 
the 1'11 correction term in (1.1). When 'p = x/4 and interactions are extremely anisotropic, 
we discuss relations between the hard-square model and one-dimensional quantum systems. 

The format of the present paper is as follows. In section 2 a hard-squae model is 
defined. In section 3 we explain a method to analyse the model on a rotated lattice. In 
section 4 we calculate eigenvalue spectrum of the transfer matrix at criticality. From the 
results in section 4, finite-size properties are investigated in section S. Section 6 is devoted 
to a summary and discussion. 
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2. Critical hard hexagons and tricritical hard squares 

When Baxter solved the hard-hexagon model, he considered a square lattice gas model with 
nearest-neighbour exclusion (thus ‘hard squares’) and next-nearest-neighbour interactions 
t1.23-251: There is an occupation number uj(= 0, 1) at each site i on a square lattice; 
uj = 0 if the site i is empty; uj = 1 if the site i is occupied by a particle. The BoItzmann 
weight is assigned on each unit face depending on particle configurations around it. We 
denote by W(a, b, c, d) the Boltzmann weight of a face with occupation numbers a, b, 
c, and d counterclockwise starting from the south-west (sw) corner. The corresponding 
Boltzmann weight is 

(a+b+~+d) /4~Kac+Lbd~-a+b-~+d if ab = bc = cd = da = 0 
W ( u ,  b. c, d)  = (2.1 . .  . . . 

otherwise 
where m is a normalization factor of the partition function and t is a parameter which cancels 
out of the partition function. The thermal equilibrium state of the model is determined for a 
given value of one-particle activity z and diagonal interactions K ,  L. In the thermodynamic 
(z, K ,  L) space, the hard-square model is solvable on a two-dimensional manifold defined 

(2.2) 
The manifold (2.2) consists of three disjoint sheets. Each sheet is divided into two 

regimes by a line of critical or tricritical points: the first sheet is in the region K > 0, 
L < 0. The hard-hexagon model is Iocated at the K + 0, L + -CO limit on it. A line of 
critical points which is given by (2.2) and the equation 

(2.3~)  

separates regime I from regime II; regime I is a disordered fluid regime, and regime II 
a triangular (3 x I )  ordered solid one [1,23,24]. The third sheet, which is in the region 
K .e 0, L > 0, is divided into regimes V and VI by a critical line. Situations of regime V 
(respectively VI) differ from those of regime I (respectively 11) in the interchange of K 
and L. 

In the case of attractive diagonal interactions (K, L z 0) the manifold (2.2) corresponds 
to the second sheet, which is composed of regimes IlI and N. In the (2, K ,  L )  space regime 
III is a first-order transition surface separating a disordered fluid phase and square (f ix fi) 
ordered solid ones [25,26]. Regime IV is an analytic continuation of regime III beyond a 
line of tricritical points but lies in  a square ordered solid phase; on the second sheet the 
tricritical line is located by the additional equation 

by 
z = (1 - e-‘)(1- e-L)/(eK+L - eK - eL) . 

z-‘/2(1 - zeK+L) = [(I + & ) / 2 1 - ~ / ~  

z-‘/2(1- ze’fL) = -[(I + 4 5 ) / 2 1 - ~ / ~ .  (2.3b) 

Hereafter, we restrict ourselves to the critical line on the first sheet (critical hard 
hexagons) and the tricritical line on the second sheet (tricritical hard squares). On the 
two lines, after m and f are determined suitably, the Boltzmann weights around a face are 
parametrized in terms of the trigonometric functions as 

w ]  = W ( 0 ,  0, 0,O) = sin(2h + U)/ sin2h 
02 =W(l,O,O,O) = W(O,O, 1,O) = ~sinu/ [s inh~in2A]~/ ’  

04 =W(l ,O,  1,O) = sin(2h - v)/sin21 
ws=W(O, l ,O , l )=s in (h+u) / s inA 

03 =W(O.l,O,O) = W(O,O,O, 1) =sin(h-u)/sinA (2.4) 
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where the crossing parameter A = x/5;  the spectral parameter U. which represents spatial 
anisotropy, is in the interval -A < U < 0 for critical hard hexagons, and 0 < U < A for 
tricritical hard squares [ 1,23,24]. 

In analyses we use the following properties satisfied by the face weights W [1,3,4]. 
(i) The Yang-Baxter relation 

"(a,  b, c,  a"lu) W(a", c,  b', a'lu')W"(c, 6 ,  b", b'lu") 
E 

= W@", U ,  C, U'IU'')W(U. b, b", clu')W(c, b", b', a'lu) 
c 

for all a, a', a", b,  b', b" = f l  with U + U" = U', 
(ii) the standard initial condition 

W(a.  b, c,  d10) = S(a, C) 

and 
(iii) crossing symmetly 

W ( ~ , b , c , d l A  - U )  ( k p T ) - b + c - d  - W(b,  a,d,  4 ~ ) .  (2.7) 

The crossing symmetry shows that replacing the parameter U by A - U in (2.4) is equivalent 
to rotating the lattice through n/2. From (2.6) and (2.7) it is found that 

(2.6') 

3. Auxiliary faces method 

In this section we explain a method for solving the hard-square model on a rotated lattice. 
Introducing auxiliary faces, we relate a rotated system to an inhomogeneous one in the 
natural orientation. Then, the inhomogeneous system is analysed by commuting transfer 
matrices argument. 

We start with defining an inhomogeneous hard-square model. Suppose a square lattice 
of M + N columns and M' + N' rows (M = lm, N = In, M' = I'm, N' = l'n) in the 
natural orientation, and impose on it toroidal boundary conditions. It is also assumed that U 
can vary from face to face. By u;j we denote the value of U for the face whose south-west 
(sw) corner is the site (i. j ) .  Set the uij to be 

for 0 6 i < m - 1.0 < j < n - 1 (mod m + E )  
for m < i < m  + n  - 1,0< j < n - I (mod m + n )  
for O < i < m - l , n < j < m + n - 1  (modm+n)  
for m < i < w + n  - 1, n < j < m + n  - 1 (mod m + n )  

(3.1) 
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( b )  

Figure 2. (a) Inhomogeneous system (3.1). Faces U = 0 (respectively YO. A - KO. A) are shown 
by x (respectively ., 0, t). (6) Shearing auxiliary faces U = 0 and A, we deform the l d c e  
into a rotated one. (c) The rotated lattice is composed of two kinds of faces U = K O  and A- uo. 
(d )  Using the crossing symmeuy. we find the rotated model. In the rotated model V(KO) is a 
Vansfer matrix beween two zigmgwalls, which i s  represented by a fuU line. 

where 0 c uo e A for tricritical hard squares, and -I < uo c 0 for critical hard hexagons 
(figure 2(a)). Faces with utJ = 0 and A are auxiliary ones. On each auxiliary face uij = 0 
(respectively A) occupation numbers of the sw, NE (respectively NW, se) corners are always 
the same because of the standard initial condition (2.6) (respectively (2.6’)). Shearing 
auxiliary faces (figure 2(b)), we can continuously deform the lattice into a rotated one 
whose rotation angle p is given by 

tanrp=m/n.  (3.2) 

The rotated system consists of faces uti = uo and A - uo (figure 2(c)). We note that the 
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orientation of faces uij = uo is different from that of faces uij = h - uo in the x / 2 -  
rotation. We use the crossing symmetly (2.7) for faces ujj = h - uo. Then it is found 
that the inhomogeneous system (3.1) is equivalent to the hadsquare model with U = uo 
rotated through p with respect to the natural orientation (figure 2(d)).  We can analyse the 
hard-square model rotated through rp by considering the inhomogeneous system (3.1). 

The inhomogeneous system (3.1) is investigated by commuting transfer matrices 
argument. Let U = [u,,uz ,..., uM+N] and U' = [u;,u; ,..., u $ + ~ )  are particle 
configurations of two successive rows with periodic boundary conditions. A one-parameter 
family of RRTMs is defined by elements as 

(3.3) 1 (i+l)(m+n)-I 

x n w (Uk+I* os;+z* U&., Iu 4- uo) , 

k=i(m+n)+m 

From the same derivation of (3.3) in [24], we get a matrix equation for T(u) [27]: 

T(u)T(u +A) = I + T(u + 3h) (3.4) 

where I is the identity matrix. The Yang-Baxter relation (2.5) shows that, for all complex 
numbers U, U', T(u) and T(u') commute with each other, being simultaneously diagonalized. 
We denote the eigenvalues ofT(u) by ?-(U). It follows from (3.4) that each eigenvalue T ( u )  
satisfies the functional equation (or inversion identity) 

T(u)T(u  +A) = 1 + ?-(U + 3 h ) .  (3.5) 

From the parametrization (2.4) we find the periodicity relation 

T(u  + 9) = T ( u )  . (3.6) 

Detailed analysis shows that the eigenvalue T(u)  must be of the form 120,241 

I N  sin(2h + U) sin h 
sin(2h - U) sin(A + U) 

sin(2h + U + UO) sin h 

M+N 

j=I 

x R n sin(u - u j )  

M+N 
uj = 3 ( M  + N ) h  + kn 

j = I  

(3.7u) 

(3.7b) 

where R is a constant, and k an integer. The zeros uj are determined by substituting ( 3 . 7 ~ )  
into ( 3 . 3 ,  and then by solving (3.5) with (3.76). Using a solution uj in (3.7a), we find an 
expression for T ( u ) .  There are many eigenvalues T ( u ) ,  corresponding to different solutions 
U j .  
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After the eigenvalues T ( u )  are calculated, we can get the necessary information to 
analyse the inhomogeneous system (3.1) and hence the rotated system by letting U = 0 and 
A - UO. For example, the partition function of the rotated system is given by 

S =Tr[V(uo)”] = [ Vj(uo)”] 
i 

( 3 . 8 ~ )  

(3.86) 
(3.8~) 

where q ( u )  (or b(u)) is the j t h  eigenvalue of T(u) (or V(u)) in decreasing order of 
magnitude. In the rotated system, V(u0)  corresponds to a transfer matrix between two 
zigzag-walls, as shown in figure 2(d). The zigzag-wall transfer matrix reduces to the RRTM 
and DDTM when m f n = 0 and 1, respectively. 

4. Finite-sue corrections 

Following the programs given in section 3, we analyse the rotated hard-square model. In 
this section, when I becomes large with m and n fixed to be constants, we calculate the 
asymptotic behaviour of the eigenvalues T(u) .  In next section, substituting calculated 
eigenvalues into (3.8), we discuss finite-size properties of the rotated model from the 
viewpoint of the conformal field theory. 

At the first place we briefly summarize predictions gained from the assuqtion of 
conformal invariance at criticality: two-dimensional critical models are classified into 
universality classes according to the central charge c of the Virasoro algebra, which is 
connected with the conformal invariance at the critical point [12-141. There exists a 
sequence of universality classes of systems with unitarity [14,28], where the central charge 
is given by 

c = 1 - 6/m(m - 1) (4.1) 

with m = 4.5,6, . . . ; tricritical hard squares corresponds to the case m = 5 ,  and critical 
hard hexagons m = 6. For each value of c in (4.1) possible scaling dimensions x, which 
are power-law exponents for correlation functions of various scaling fields, are given by the 
conformal weights (h ,  i) in the Kac table [14,28,29] as 

x = h + i .  (4.2) 

If we suppose a conformally invariant model on a torus of I x l’ [14,15], the partition 
function is represented as 

Z - exp(-ll’fPdq) (4.3a) 

with 

q = exp2nis r = i l ‘ / l  (4.36) 
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where f is the per-site free energy and the finite-size correction Z,(q) is a universal term. 
By xn(q) we denote a character of a representation of the Virasoro algebra characterized 
by a highest weight h. Then Z,(q) is written as 

(4.4) 

The multiplicity factors Nh,h are determined by requiring that Z,(q) must be invariant under 
transformations of the modular group. 

In the case of tricritical hard squares, we get 

Zt"')(q) = lXO(9)12 + IX3/80(4)12 + IXl/lO(q)lz + lX7/16(4)12 + /x3/5(4)Iz f lX3/2(4)1*. 
(4.5) 

To compare (4.3) and (4.5) with the transfer matrix analysis (3.8). we assume that 
I' >> 1 >> 1, and expand the RHS of (4.5) as 

Zpqq)  - (qq)-7/=0[1 + (g4)3/80 + ( q q ) I / l O  + (q4)7"6 + (93%7*3/80 + q 83/80 g -3/80 ) 

+ (g@3/5 + ' ' .] . (4.6) 

Substituting (4.6) into (4.3), and taking logarithms of both sides of (4.3). we find that the 
leading terms reduce to (1.1) with c = 7 

Similarly, for critical hard hexagons, it is found that 

z!hx)(9) = IXOk7) + X3(9)IZ + IX2/5(4) + X7/5(4)I2 +21X1/15(9)12 + 21X2/3(4)I2 (4.7) 

Expanding (4.7) into a power series of g, we get 

z,"')(~) - ( q q ) - l / 3 0 [ 1  + 2(qq)l/15 + (gq)2/5 + 2(ql/15q16/15 + qt6/15qI/15) 

+ 2(qq)W + 2(q2/5q7/5 + q'l5qW) + . . .] , (4.8) 

The leading behaviour in the RHS of (4.8) shows that c = z .  
4.1. Tricritical hard squares 

Analytic calculations for critical models were very cumbersome [17, 181. Recently, Kliimper 
and Peace  developed a new approach to these problems [ 19-22]. They applied it to several 
solvable models to determine the central charge c and scaling dimensions x .  For tricritical 
hard squares and critical hard hexagons these were done in [ZO] (KP); see also [19]. We use 
the arguments in KP to find asymptotic behaviour of T(u) as I -+ DO. In this subsection we 
deal with tricritical hard squares, and in next subsection critical hard hexagons. Calculations 
are somewhat indirect. We obtain T ( u )  without determining the zeros U, explicitly. The 
inversion identity (3.5) is solved by the use of special values of Rogers dilogarithms. 

0 (mod 2). 
In the complex U plane our attention is restricted to the strip 0 c Re(u) c A - u g .  We 
calculate the largest eigenvalues there. The bulk behaviour of T(u)  is determined first. The 
parametrization (2.4) corresponds to the x --f -1 limit of (3.11) in [24]. When the transfer 
matrix is defined by (3.3) with the face weights (2.4) replaced by (3.1 I )  in [24], we denote 
it by T(u; x ) .  and its eigenvalues by T(u:  x ) .  To find the largest eigenvalues T(u; x )  in 

For tricritical hard squares we suppose that 0 c uo c A, and that M + N 
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the strip 0 e Re@) e h - uo, we repeat almost the same argument as [27] in the 1 + 00 

limit with m and n fixed to he constants. From the calculated eigenvalue T(u:  x), the bulk 
behaviour of T ( u )  is estimated as 

for u in strip 1 
for u in strip 2 Z(u)  

where 

and strips 1 and 2 are defined by 

strip 1: 

strip 2: 

-n/10 e Re(u) e 3n/10 - uo 
3n/10 e Re(u) < 9n/10 - uo . 

(4.9) 

(4.10) 

(4.11) 

Secondly we derive integral equations for finite-size corrections. To the largest 
eigenvalue in 0 e Re(u) e h - uo, denoted by G(u) ,  the argument in section 2.1 of 
KP is applied with some modifications. Numerical analyses for finitesize systems show 
that (a) for sufficient large 1 and in a periodic ship 0 < Re(u) < H, the zeros U, are in 
3 ~ / 1 0  - ug < Re(u) < 3n/10 or 9n/10 - ug e Re@) e 9rr/10, and that (b) the distances 
of the furthest zeros from the real axis grow as lnl. Though we cannot prove (a) and (6) 
rigorously, "e are certain of the properties. In the Im(u) --f fw limit with the system size 
1 fixed to be a constant, (3.5) becomes 

t 2 = I + t  (4.12~) 

with 

f = lim T ( u )  = lim T ( u )  
Illl(U)-m Im(u)+-m 

It follows that 

(1 -& 
2 .  

or (1 + 4% 
2 

t =  

From numerical results we find that (c) t = (1 + A ) / 2  for Tl(u) .  
Using (4.9), we define finite-size corrections of TI@) in strips 1 and 2 by 

for u in strip 1 
Ti(u) = 

Substituting (4.13) into (3.5), we get 

[1(11)11(u + h) = p2(u)  

lz(u)lz(u + A )  = p l ( u )  

-n/10 i Re@) < a/10 - uo 

3a/10 < Re(u) < 7n/10 - ug 

(4.12b) 

(4.12~) 

(4.13) 

(4.14) 
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where 

pl(u) = 1 + T,(u  - 2X) 3a/10 < Re(u) c 7n/10 - uo 

p ~ ( u ) = I  +T,(u+31) -n/IOcRe(u) < z / l O - i ~ , .  
(4.15) 

In their respective strips, II ( U )  and I&) are analytic. The property ( U )  shows that II ( U )  

(or I ~ ( u ) )  is non-zero in strip 1 (or 2). and (c) that the logarithms of I ,  (U) and la(u) tend to 
constants as h ( u )  -+ kw. Therefore, the derivatives of InIl(u) and lnlz(u) have Fourier 
transforms. Taking logarithms and derivatives of both sides of (4.14), and then Fourier 
transforms, we find that 

0 < Re(u) c min [a/5,3a/10 - U O )  

n/2 < Re@) c 7n/10 - uo . 
We integrate (4.16) with integration constants DI and DZ as 

Ina(x) = k * In s ( x )  + D1 
InZ(x) = In Z [ (x /5) i  + (3n/5)] + k * Inp(x) + DZ 

where 

a ( x )  = p ( x )  - 1 = 

6 ( x )  = S ( x )  - 1 = TI [(x/5)i + (6n/10)] 

[(x/5)i t (a/lO)] 

and f * g(x) is the convolution of the functions f ( x )  and g ( x ) :  

f *&) = L m s ( x - ~ ) f ( ~ ) d i .  
m 

The kernel k ( x )  is given by 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

k ( x )  = 1/2n cosh(x). (4.20) 

Take the x -+ &w limit in (4.17). Then, from (c).  it follows that 

Di = Dz = 0. (4.21) 

The equation (4.17) with (4.21) is exact, even for finite I .  

property (b). we define the following functions: 
Now we investigate the asymptotic behaviour of TI@) as I becomes large. Noting the 

(4.22) 
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From (4.17) it is shown that the functions a*(x), &(I) satisfy the equations 

Ina*(x) = k *InAa(x) 

Inii+(x) = -2e-'(m + neiSiUO ) + k * InA+(x). 

For large I ,  the first equation of (4.17) is rewritten by the use of A * ( x )  as 

(4.23) 

1 m 

lnT,(u) -$ [e'!" dye-YInA+(y)+e-" dye-YInA-(y) (4.24) 

with U = (x/5)i + x/10. From (4.23) it follows that 

CO 

dx ([lna+(x)]'InA&) - Ina+(x)[lnA+(x)]'] 

m 
= 1, 
+.L dx ([In &&)I' In 

Integrating the LHS by parts and using (4.22) in the RHS gives 

- Ini+(x)[ln A&)]'] 

4(n + ne*5iu0) [I dx e-' In A&) 

= / a*(-") 
da+[a;' In(1 +a*) - (1 t a+)-' I n a d  

a*(-) 

i*(-m) 

From (c) and (4.23), we deduce that 

+ 1 ~IZ+[Z;' In(l+ ii*) - (1 +a+)-' inii+l 

a*(CO) = ( 1  + &)/2 

B*(-cO)=O Z*(CO)=(l+&)/Z. 

a*(-CO) = 1 

Substituting (4.27) into (4.26), we get 

4(n + n e * ' " o ) ~ ~  dxe-'InA*(x) =4L+[(&+ 1)/2] -2L+(1) 

=4L[(&- 1)/2] -2L(1/2) = 7 ~ * / 3 0  

where L+(u) is a dilogarithmic function defined by 

and L(a) is the Rogers dilogarithm 

1 La [ In(1 - b) + '"1 L(a) = -- 
2 b 1 - 6  ' 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 
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The dilogarithm L+(a) is related to the Rogers dilogarithm as 

L+(a)  = W/(l + x ) l .  (4.31) 

(For detailed definitions of the dilogarithmic functions and relations among them, see the 
appendix in KP and [30].) Using (4.28) in (4.24), and after some calculations, we find that 
for U in strip 1 

(4.320) 
e-x 1 In7'j(u) - -- + 

e5iuo tan cp + e-siuo 

with U = (x/5)i + r / l O .  

are repeated with some modifications. \.Ye obtain the following results: for U in strip I 
For finite-size corrections of other eigenvalues, the arguments in sections 2.2-2.5 of KP 

(4.326) 
e5ium + tan 'p t- e-5iUo 

e-x 1 In Tz(u) - n i  - - 

(4.32) 

(4.32e) 

with U = (x/5)i 4- "/IO. In (4.32~-e) we represent the jth eigenvalue and its descendants 
as 'T,;b,k-(u) with k* = 0, 1,2,. . . . 

4.2. Critical hard hexagons 

In the cme of critical hard hexagons we suppose that - A  < ug < 0. We also assumed 
that M + N 3 0 (mod 3). The eigenvalues T ( u )  are calculated in a similar way to the 
previous subsection. Our attention is restricted to the largest eigenvalues in the strips 
-h - uo < Re(u) < 0 and A. - ug < Re(u) < 2A. 

Firstly, we determine the bulk behaviour of T ( u )  by considering a tTansfer matrix 
T ( u ; x ) ,  which is given by (3.3) with the face weight (2.4) replaced by (3.14) in [24]. 
The eigenvalues of T(u; x) are denoted by T(u;  x ) .  As 1 + CO with m and n fixed to 
be constants, we find the asymptotic forms of T ( u ;  x ) ,  which are the largest in the strips 
-A - ug Re&) e 0 and h - uo < Re(u) c W, by the same argument as [27]. From the 
calculated T ( u ;  x ) ,  it follows that 

(4.33) 



Rotational invariance of crilical hard squares 5113 

where 

ZI(U) = Z(U)"Z(U + UO)" 

&(U) = I / z ( u  - x/5)mZ(U + U0 - x/5y 

with 

z(u) = sin(5u13 - n/3)/sin(5u/3 + n/3) 

and the two strips are defined by 

strip 1: 

strip 2: 

- 2x15 - uo c Re(u) c n/10 

n/10 - uo c Re@) c 3x15 

(4.34) 

(4.35) 

(4.36) 

Secondly, we repeat almost the same analyses in KP to find integral equations for 
finite-size corrections of T(u) .  The argument in section 3.1 of KP is applied to the largest 
eigenvalue f i ( u ) .  After some calculations, we obtain for U in strip 1 

(4.37a) 

with U = (3x/IO)i - (3n/20); for U in stirp 2, InZj(u) is replaced by InZz(u) in the RHS 
and U = (3xjlO)i + (7n/20). 

A doublet of the next-largest eigenvalues T.*)(u) are determined. The argument in 
section 3.2 of KP shows that for U in strip 1 

with U = (3x/IO)i - (3n/20); replacing InZ](u) and +2xi/3 by InZz(u) and -2irij3 in 
the RHS, respectively, gives the expression for U in strip 2 with U = (3xjlO)i + (7x/ZO). 
The other next-lagest eigenvalue $)(U) is the complex conjugate of T:~'(u). (Hereafter, 
we represent by T(*)(u) a doublet of eigenvalues which are complex conjugates.) 

Analysis for the next-next-largest eigenvalue T&) is somewhat complicated. According 
to the locations of the zeros u j .  we move the paths of Fourier integrals. When m / n  = 1, 
for example, numerical analyses for finite-size systems show that, in a periodic strip 
-7.~15 c Re@) < 3x/5 and for sufficient large I ,  the zeros U, appear near the lines 
Re@) = -2n/5 - uo/2 and Re@) = xjl0 - uo/2 densely except four zeros ut* and u a .  
Noting that the zeros uI* are close to the line Re(u) = -n/5 - U& and u2* the line 
Re@) = 2x/5 - u0/2, we move the path of each Fourier integral in (3.8) and (3.9) of Kp 
by -u0/2 along the real axis. Then, from almost the same analysis in section 3.3 of KP, it 
follows that for U in strip 1: 

(4.37c) 

with U = (3x/lO)i - (3n/20); InZl(u) (respectively -2xi) is replaced by InZz(u) 
(respectively 2xi) and U = (3x/lO)i + (7n/20) for U in strip 2. We denote the next- 
next-largest eigenvalue and its descendants by T3;b.k. (U) with k* = 0, I ,  2, , . . . 
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Similarly to the analysis for T3:ir+,k- ( U ) ,  we repeat the arguments in sections 3.4-3.6 of 
KP with some modifications, including movements of paths of Fourier integrals, We find 
that for U in  strip 1 

(4.374 

(4.375) 

with U = (3x/IO)i - (3rr/20) and k[a = 0, I ,  2, . . .; for U in strip 2 In ZJ(U) (respectively 
+4rri/3 in (3 .474  +2ni/3 in (3.47e)) is replaced by InZz(u) (respectively -4ni/3, 
-2rri/3) and U = (3x/IO)i + (7rr/20). We also find the conjugate eigenvalues T&)(u), 
Ti&(u), and T&:,k.(4. 

5. Spatial anisotropy and conformal invariance 

Now, substituting T(u)  determined in section 4 into (3.Q we investigate the partition 
function E. Emphases are placed on its finitesize correction E, L14.151, which is defined 
by 

E~ = f,l'-?co lim E/K"' (5.1) 

where the limit is taken with the ratio 6 = I ' / l  fixed to be a constant and K is 

K = Iim E'/"' = lim v~(u~) ' / '  , (5.2) 

0 (mod 2). We set 
U = 0 and h - UO in (4.32). Substituting the eigenvalues T(0)  and T @  - uo) into (3.Q we 
find that [31] 

l,f'-.cc I-+- 

For tricritical hard squares it is supposed that M + N M' + N' 

(5.3a) 

(5.3b) 

(5.3c) 
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where ka = 0, I ,  2, .  . . and 
A = ( y 2 - y - ’ )  sin ’ B cos B 

r2 = y 2  cos2 B + y-2 sin’ B 

y2 = tan(rtuo/2~) 

B = q + + / 4 .  

with 

(5.3d) 

(5.3e) 

(5.4) 

(5.5) 

We consider the case of isotropic interactions uo = h/2. From (5.5) it follows that 
y z  = I. Substituting y’ = I into (5.4) gives A = 0 and r = 1. If 1‘ >> I >> 1, after 8, is 
expanded as (3.8a), we use (5.3) in the expansion. It is found that, within the validity of 
the expansion, 8, is a function of the ratio I‘ll but is independent of the rotation angle 8.  
The result shows that the system is invariant under scale transformations and rotations. We 
also know that the system is invariant under translations. Though the global transformations 
cannot be generalized to local ones directly, it is suggested that the system is conformally 
invariant. As shown in KP, the eigenvalue spectrum is in agreement with (4.6). which is 
generated by the modular invariant partition function Zpq’(q). We identify 6, with Zpq). 
If we consider anisotropic systems, T in (4.3b) is replaced by 

(5.6) t = (l’/l)(i + A ) / r Z .  
For critical hard hexagons we assume that M $- N M‘ - N‘ 0 (mod 3). Substituting 

(4.37) into (3.8) with U = 0 and i - UO, we get 

in[vl(U0)/K~]I’ - ( ~ / w ‘ / o ( ; ) / r ~  (5.7Q) 
1‘ 

In[VF)(uo)/Vj(u~)] - *(M’- N’)2ni/3 - Zn(l’/l)(&)/r’ (5.76) 

k (uo) 4n. I‘ 1 .I’ A 
VI (ua) 3 1 1 rz In [ ’ +’ 1‘’ - i ( M ‘  - “)-I - 2n- (2k - #) 7 2a1-(2k - 1)- (5.7d) 
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(a) 

: > 

. > 

m, 

Figure 3. For mast misompic systems conformal invariance is restored by deforming the 
geometry of the lattice. 

where k(*) = 0, 1,2, . . . . The eigenvalue spectrum agrees with (4.8) if r is redefined by 
(5.4) and (5.6) with y 2  replaced by 

y 2  = - tan(nuo/3i). (5.8) 

For given values of uo and 8 ,  (5.6) shows that the anisotropic system has the same 
finite-size correction E, as the conformal invariant one if the geometry of the anisotropic 
system is deformed as follows (figure 3): stretch the original lattice along either of the two 
coordinate axes (5 + rr'), shear it into a parallelogram (r 4 r - Al'/f), and then impose 
on it toroidal boundary conditions. The deformation corresponds to an anisotropic rescaling 
of length by amount of y2 along a direction rotated through 0 from the coordinate axes. 
Note that y 2  is independent of 6'. It is suggested that conformal invariance of the system is 
restored by the anisotropic rescaling. We consider the case uo = -2, for example. In this 
limit the model reduces to the hard-hexagon model. Substituting ug = -A into (5.8) shows 
that 

y 2 = A .  (5.9) 

By the anisotropic rescaling the square lattice is deformed into a triangular one. We define 
a shift operator S by 

S = [T(O)"T(-uo)"]"' (5.10) 

with (m+n)l" 0 (mod 3). Returning to the inhomogeneous system (3.l), and introducing 
the shift operator S into (3.1). we can investigate the triangular lattice and its rotations. 
Then, we find scale and rotational invariance of finite-size correction E, of the hard-hexagon 
model, as shown in the case of isotropic tricritical hard squares. 

Finally, we fix the rotation angle to be 6' = p+71/4 = K / Z  with m = n = 1 and consider 
onedimensional quantum systems associated with tricritical hard squares and critical hard 
hexagons [1,4,18,21,321. From (5.4)-(5.6), and (5.8) it  follows that 

r = i(l'/f)yz (5.11) 

with 

tan(nuo/2h) for tricritical hard squares 
- tan(lru0/3A) for critical hard hexagons. 

(5.12) y 2 =  1 
Equations (2.6) and (26') show that 

lim V(u0) = I 
U"'0 

(5.13) 
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with the identity matrix I. Hamiltonians H of one-dimensional quantum systems of 2 sites 
are defined by 

(5.14) 
Quantum system 1 is associated with tricritical hard squares, and II critical hard hexagons. 
Finite-size corrections of the partition functions of the quantum systems, denoted by Ec, 
are obtained as 

(5.15) 

where the limit is taken with uo = +$/l'; the upper sign is for the quantum system I, and 
the lower sign for the quantum system U; ,f? is the inverse temperature and 

V(Gu0) = I - SuoH + ' .  . suo - 0. 

- 

- - oc = lim E, = Z&) 
/'+ m 

(5.16) 

Note that taking the limit has an role of replacing the ratio 6 = l ' / l  of classical systems 
by the ratio 8 = B/U of the quantum systems. The ratio 8 is multiplied by an anisotropy 
factor (or effective light velocity) V which is determined by the derivative of y 2  at uo = 0 
as 

for quantum system I 
(5.17) 

of the quantum systems 

F F : ~ ~ B E - ( B / U ) V ( ? T C / ~ ) + . - -  (5.18) 

&/3h for quantum system II. 
When ,E >-> U >> 1, the leading behaviour of the free energy 

is 

where 6 is the (per-site) ground state energy determined by 

(5.19) 
- 
- I 10/3& for quantum system U 

and the second term is a universal one containing the central charge c; for quantum system I 
(or n) c = 6 (or i) 

To consider F for 21 >> ,4 >-> 1, it is convenient to see the lattice from a ir/2 rotated 
frame [32]. This is achieved by changing the parameter uo into A - UO. In (5.11) y z  is 
replaced by 

- 5  ' 

for tricritical hard squares 
for critical hard hexagons . (5.20) = [ cot(ruo/W 

- cot(ruoj3h) 

Rc = lim ~ ~ l , , ~ = * p , / =  z&) 
Finite-size corrections gC of the quantum systems of 21' sites are calculated as 

(5.21) 
1-CO 

with 
G =exp%i? 

5 = lim i(l'jl)cot(pi/21) = i(21'/,8)(1/;) 
1-CO 

Supposing that 21' >> p >> 1, we obtain [331 
F ,., 21'86 - (21'/8)(l/Z)(rc/6) +. . 

(5.22) 

(5.23) 
The second term in the RHS of (5.23) is also found from (5.15) by the use of the invariance 
of 2, under the modular transformation 5 + -112, 
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6. Summary and discussion 

In this paper we considered a square lattice rotated through an arbitrary angle rp with 
respect to the coordinate axes. Then, a method was developed to analyse solvable models 
on it. In the method we used three properties of the face weights: the Yang-Baxter 
relation, the standard initial condition, and the crossing symmetry. Auxiliary faces were 
introduced into a rotated system to relate it with an inhomogeneous one in the natural 
orientation. The inhomogeneous system was analysed by commuting a transfer matrix 
argument. 

By the new method we investigated tricntical hard squares and critical hard hexagons. 
Supposing the models on a torus of size 1 x 1’, we considered expansions of finite-size 
corrections Ec of the partition functions by the use of some largest eigenvalues of transfer 
matrices. In the case of isotropic tricritical hard squares it was found that the expansion is a 
function of the ratio / ‘ / I  but is independent ofthe rotation angle (0, which shows invariance 
of the system under scale transformations and rotations. The scale and rotational invariance 
gives an evidence for conformal invariance. 

For most anisotropic systems extra factors rz and A appeared in the expansion of 
Ec, which showed that the rotational invariance of the system is broken. Representing rz 
and A as functions of rp, we found that the rotational invariance is restored by a suitable 
anisotropic rescaling of length by yz;  if the lanice is rotated through rp with respect to 
the coordinate axes, the direction along which the system is rescaled is rotated through 
B = rp + z/4; an important thing here is that y 2  is independent of 8 .  The amount of 
rescaling y 2  and its direction 8 correspond to a ratio between major and minor axes and 
their orientation of an ellipse to which equilibrium crystal shapes in [34] reduce in the critical 
limit. We also find that yz  is in agreement with approaches from off-critical calculations 
in [35]. 

We considered the D D ~ S  of tricritical hard squares and critical hard hexagons. One- 
dimensional quantum systems were defined in the uo + 0 or A limit of DDTMs. We 
found that, if y2 is represented as a function of the spectral parameter uo and the crossing 
parameter A, finite-size properties of the quantum system are directly derived from those of 
tricritical hard squares or critical hard hexagons through the function. We expect that the 
structure is a quite general one. As mentioned in section 1, the auxiliary faces method can 
be applied to a wide class of solvable models. We hope that this fact will be clarified in 
further publications. 

It is known that a special class of the !agomi lattice eight-vertex model is solvable 
[ I ,  361. The solvable class of the kagom6 lattice eight-vertex model can be investigated 
by a combination of inhomogeneous RRTMs and a DDTM. It is shown that the auxiliary 
faces method is easily applicable to these problems. We will report detailed calculations 
elsewhere. 
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